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Abstract  8 

Local characterization of groundwater systems is critical for managing and protecting 9 

vulnerable resources. Geophysical methods can provide dense imaging of subsurface 10 

parameters to delineate lithological boundaries and water tables for hydrogeological 11 

investigation. Though, using a single geophysical method for determining lithologies can yield 12 

erroneous interpretations as different lithologies can have similar properties. By using several 13 

geophysical methods, it is possible to reduce this risk and better assign likely lithologies to 14 

subsurface units. We present two case studies where transient electromagnetic (TEM) and 15 

surface nuclear magnetic resonance (SNMR) are used in combination to delineate 16 

hydrogeological structures. Novel spatially constrained inversion in SNMR was used to 17 

provide horizontal consistency between soundings. Three coincident parameters, resistivity 18 

from the TEM measurements and water content and relaxation time from the SNMR 19 

measurements were used in a K-means clustering scheme to resolve subsurface structures. 20 

The K-means clustering was evaluated with a silhouette index to pick the number of clusters. 21 

After clustering, each cluster was assigned a hydrogeological description based on the distinct 22 

features in the three parameters, e.g. a low resistivity, high water content, and high T2
* is 23 

assigned as saltwater saturated sand. In the first case study, the clusters enabled improved 24 

resolution of a regional water table in an unconfined aquifer setting by the multi-geophysical 25 

approach. The water table estimates were positively evaluated against multiple boreholes 26 

within 500 m of coincident geophysical models. The second case study illustrates how 27 

clustering, of SNMR and TEM models, can delineate saltwater intrusion in an island coastal 28 

aquifer, which would not be possible with any of these methods individually. Additionally, the 29 

clustering resolved the main shallow aquifer on the island. Our work illustrates how the 30 

combination of geophysical data can be used to improve resolution of hydrogeological layers 31 

and reduce interpretational bias.  32 
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1 Introduction 1 

Climate-resilient groundwater management hinges on the need for detailed characterization 2 

of local groundwater systems (Dragoni & Sukhija, 2008). Historically, lithological descriptions 3 

of wells have been used to establish geological models to forecast local groundwater behavior 4 

and inform conceptual models of local systems (van Roosmalen et al., 2007). The high cost 5 

associated with drilling yields geological maps that are generally based on sparse point 6 

coverage, with long-distance interpolation, and simplicity assumptions between observations 7 

where structures may actually be complex. To address these data sparsity issues, geophysics 8 

can be used to delineate structures non-invasively, giving high resolution imaging of the 9 

subsurface to complement direct borehole observations (Binley et al., 2015). Methods based 10 

on imaging of subsurface electrical properties are used extensively in hydrological 11 

investigations, where spatial variations in the electrical properties, specifically the resistivity, 12 

of the subsurface are used to study pollution, explore groundwater resources, and delineate 13 

saltwater interfaces, among many other applications (Binley et al., 2015). Within methods 14 

imaging electrical properties, electromagnetic (EM) methods are widely used. They operate 15 

inductively by creating a varying magnetic field inducing eddy-currents in the ground 16 

(Nabighian & Macnae, 1991). The secondary magnetic field produced by the decaying eddy-17 

currents is measured inductively at the surface. The measurements are rapid, which leads to 18 

high data acquisition rates that enable mapping of large areas using towed or airborne 19 

platforms (e.g. Auken et al., 2019; Sørensen and Auken, 2004). The EM data are translated 20 

into 1D models of resistivities by inversion (Christiansen et al., 2006), providing valuable 21 

insights into local (hydro-)geology. A limitation in these methods is that they rely on 22 

inconsistent links between lithology and resistivity. An implication of this is that assigning 23 

lithology to a specific electrical resistivity requires local knowledge of the link between 24 

resistivity and the associated lithology or geological unit (Dickinson et al., 2010). A common 25 

challenge is that different geological units have overlapping resistivity ranges making unique 26 

identification based on resistivity alone difficult or sometimes impossible.  27 

Surface nuclear magnetic resonance (SNMR) provides direct sensitivity to water residing in 28 

large pores (Hertrich et al., 2007; Legchenko et al., 2002). By transmitting an excitation pulse 29 

oscillating at a specific frequency proportional to the Earth’s magnetic field strength, the 30 

magnetic moment of hydrogen nuclei is shifted from its equilibrium state (Yaramanci et al., 31 

1999). After terminating the pulse, the buildup magnetization decays and is related to the 32 

subsurface water quantity and pore parameters. This allows SNMR to track changes in water 33 

content across lithological boundaries and can provide valuable information on pore sizes. A 34 

limitation in SNMR is the inability to distinguish unsaturated sand from clay, as both will be 35 

seen with low WC, in the clays caused by the magnetization decaying extremely rapidly in 36 
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small pores making it immeasurable with the SNMR. As such, SNMR cannot distinguish 1 

unconfined aquifers from semi-confined or confined aquifers without supplemental data, as 2 

the increase in water content cannot be established to be a saturation or a lithological 3 

transition (Behroozmand et al., 2015), Fig. 1. However, the combined interpretation of SNMR 4 

and TEM data, sensitive to different properties, may alleviate ambiguities in distinguishing 5 

between for instance unsaturated sand and clays (SNMR ambiguity) or clays and saline 6 

saturated sands (TEM ambiguity), which is highly relevant for coastal studies of 7 

unconsolidated settings (Costabel et al., 2017).  8 

Consider the example of an unconfined/confined system, where SNMR cannot determine 9 

whether a transition from low to high water content marks the water table or a lithological shift 10 

from clays to sands. TEM can address this as it would resolve the conductive clay layer if 11 

present and delineate the lithological change to sand as seen in Figure 1. If it was an 12 

unconfined system, the TEM would image high resistivities in both layers while the saturation 13 

change is tracked by SNMR. Another example involves saline intrusion, where TEM cannot 14 

differentiate between saline sand and clay. If it is indeed a transition only in salinity, not water 15 

content, SNMR would reveal continuous high water content across the salinity boundary. 16 

SNMR alone would not be able to distinguish freshwater sand from saline sand, as it is only 17 

sensitive to the abundance of water and not salinity. 18 

 19 

Figure 1 Different hydrogeological units resolved with TEM and SNMR. In dashed boxes, only one method is 20 
used, and the overlapping units show the ambiguities found. T2

* can be implemented to further separate units. 21 

https://doi.org/10.5194/egusphere-2025-406
Preprint. Discussion started: 30 April 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

A multiple data type approach requires forming interpretations consistent with multiple 1 

geophysical model types simultaneously, which can be achieved through manual inspection 2 

of disparate data types. This enables one to distinguish hydrogeological layers through 3 

combined interpretation of all data types, but requires subjective choices regarding boundary 4 

delineation. An alternative approach employs statistical correlations across separate 5 

parameters to partition these into different clusters. One such approach is K-means clustering, 6 

which enables the subdivision of datasets based on multiple parameters (Kodinariya & 7 

Makwana, 2013). Different clustering approaches have also previously been applied to 8 

geophysical data and focus primarily on single source datasets, such as large EM datasets 9 

(Dumont et al., 2018) or large electrical resistivity datasets (Song et al., 2010). Some studies 10 

investigate clustering on derived parameters such as clay fraction and resistivity, both linked 11 

to EM surveys (Foged et al., 2014). Clustering across disparate data types, such as Bouguer 12 

anomaly data and magnetic data has been shown to improve the resolution of mineral deposits 13 

(Sun and Li, 2016). A study focused on delineating structures in urban settings by clustering 14 

on multichannel analysis of surface waves (MASW) and electrical methods to evaluate soil 15 

foundation structure (Le et al., 2022) and found the K-means clustering to resolve important 16 

structures in the shallow subsurface.  17 

In this study, we demonstrate the benefits of combined SNMR and TEM data collection, where 18 

K-means clustering based on coincident models in two survey areas is shown to enhance 19 

interpretations and address ambiguities that persist if only a single data type is considered. 20 

The first example includes mapping of the water table in an unconfined meltwater plain aquifer, 21 

where a combined approach is used to address ambiguity as to the upper aquifer being 22 

confined/unconfined/or semi-confined across the investigated region. A second example taken 23 

from a small island shows how the method can delineate salt-water intrusion from clay-rich 24 

regions through a combined interpretation. We demonstrate a workflow for handling 25 

interpretations of SNMR and TEM simultaneously reducing possible interpretational bias.  26 

2 Methods 27 

2.1 Transient electromagnetic 28 

In this study we use Transient Electromagnetics (TEM) to resolve subsurface resistivities. The 29 

tTEM instrument (Auken et al., 2019) was used in both field areas and can resolve the 30 

resistivity structure of the top 70m, however, here only the top 25m of the full model domain 31 

are used in the analyses. The induced voltages recorded by the tTEM are translated to 1D 32 

resistivity models by Spatially Constrained Inversion (SCI) using Aarhusinv (Auken et al., 33 

2015; Viezzoli et al., 2009). The model is discretized into 30 layers with thicknesses varying 34 
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from 1m shallowly, to 10m at depth following resolution limitations at depth. The resulting 1 

resistivity models will be used for subsequent clustering. 2 

2.2 Surface nuclear magnetic resonance 3 

In this survey we use a recently developed technique for SNMR called steady-state. The 4 

steady-state has an increased stacking rate leading to a higher signal amplitude and a 5 

decrease in acquisition times (Grombacher et al., 2021). A set of transmit pulses, optimized to 6 

resolve the top 25m, was employed in both studies with the Apsu instrument with an 7 

acquisition time of 25min per site (Larsen et al., 2020). The resolved water content and the 8 

relaxation parameter, T2
*, are used in the subsequent clustering. The SNMR models are 9 

discretized into 31 layers down to 50m, increasing in thickness at depth from 0.5 m to 4 m. 10 

The resistivity structure from the nearest TEM sounding is used for the inversion. 11 

One limitation in SNMR is to detect water residing in very small pores. Because of instrument 12 

dead times associated with transmitting the excitation pulse, receiving data immediately after 13 

pulse termination is not possible. Signals from very small pores can therefore partially or fully 14 

decay before the instrument has begun recording data. As such, the magnetization from water 15 

residing in very small pores decay prior to data recording, which prevents observation of small 16 

pore water in SNMR. As such, SNMR water contents can be interpreted as a measure of “free” 17 

water or an effective porosity. T2
* relaxation time is linked to pore sizes with low values 18 

occurring in small pores, while large pores have large values. This can be used to differentiate 19 

high water content units by their pore sizes. 20 

2.3 Inversion considerations 21 

Traditionally, 1D SNMR inversions are most commonly treated separately as limited 22 

measurements are carried out. However, recent acquisition speed-ups enabled by steady-23 

state approaches have significantly enhanced spatial data density, which enables the use of 24 

horizontal constraints linking inversions of nearby measurement sites (Grombacher et al., 25 

2021). One such example is the use of laterally constrained inversion (LCI) for SNMR as 26 

proposed by Behroozmand et al. (2012) where neighboring sites in a transect can be 27 

connected. Here, we add a dimension to the constraints using a spatially constrained inversion 28 

(SCI) framework, not only to bind models in line, but all neighboring models. Delauney 29 

triangulation is used to find the relevant neighbors as in Viezzoli et al. (2009). The strength of 30 

lateral bounds is scaled by the distance between models, with a maximum strength defined 31 

when models are closer than a threshold distance. This threshold distance is typically set to 32 

the nominal or average distance between neighboring soundings (Vang et al., 2024).   33 

The computational load increases immensely when implementing SCI with many layers and 34 

parameters. To reduce the number of iterations, the SCI starting models are defined by single 35 
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site inversion results. This allows the SCI to converge within a few iterations. The TEM data 1 

are inverted separately with an SCI for the entire survey.  2 

2.4 Clustering 3 

Large datasets enable statistical approaches to inform on significant hydrogeological units. In 4 

the following examples, datasets are composed of 50 and 51 coincident SNMR/TEM 5 

soundings where a K-means clustering is employed (Kanungo et al., 2002) on their model 6 

parameters. The first step in this type of clustering is to select the number of clusters, K, into 7 

which the data sets will be clustered (Kodinariya & Makwana, 2013). After selecting the 8 

number of clusters, the algorithm makes an initial guess for the position of each cluster center 9 

in the parameter domain. The Euclidean distance from each data point to the cluster center is 10 

calculated, and each data point is assigned to the nearest cluster. The total distance from all 11 

data to their assigned clusters is then iteratively minimized through updating cluster center 12 

locations until either a minimum distance or a maximum number of iterations is reached.   13 

To improve clustering of datasets for parameters exhibiting different sensitivities and spanning 14 

different ranges, normalization was used to ensure that each parameter has the same weight 15 

in the clustering algorithm. Here, we use a Z-score for normalization, where x is either 16 

resistivity (ρ), water content (WC), or relaxation parameter (T2
*): 17 

𝑥𝑖,𝑛𝑜𝑟𝑚 =
𝑥𝑖−

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1

𝜎
          (1) 18 

where σ is the standard deviation on the cloud of parameters from the inversion, xi is the 19 

parameter value for the ith data point and n number of data points. Following the normalization, 20 

we use the Scikit learn package in Python for the clustering and silhouette analysis 21 

(Pedregosa et al, 2011).  22 

In this study, the number of clusters is chosen based on the Silhouette index, which calculates 23 

the membership Si of each data point, i: 24 

             𝑆𝑖 =
𝑏𝑖−𝑎𝑖

max(𝑎𝑖,𝑏𝑖)
, 𝑆𝑖 ∊ [−1, 1]   (2) 25 

where ai is average distance from data point i to other data points in the same assigned cluster, 26 

bi is the minimum average distance of the ith data point to all other data points in other clusters. 27 

The resulting index, or membership score, is a measure of how well a data point is associated 28 

with the assigned cluster. If the score of a given data point is 1 it infers that the data point is 29 

correctly assigned, while a score of -1 indicates that the data is wrongly assigned (Kodinariya 30 

& Makwana, 2013; Shutaywi & Kachouie., 2021). By evaluating these results, we can qualify 31 

the preferred number of clusters. In some cases, prior information can be used to fix the 32 

number of clusters, such as prior geological knowledge of the area (Dumont et al.,2018).  33 
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In this study we clustered on three parameters: WC, T2
*, and ρ. The two geophysical methods 1 

used in this study have different sensitive volumes. SNMR inversion is discretized finely with 2 

30 layers down to 50 m and the TEM has 30 layers in 120 m. To cluster on coincident values, 3 

a projection and averaging of the TEM ρ models onto the SNMR discretization is used. All 4 

TEM soundings within 60 m of an SNMR sounding are included. If there is no ρ model (TEM 5 

sounding) within 60 m, the nearest is used and mapped onto the SNMR discretization. This 6 

allows all SNMR points to be matched and prevents a reduction in data points.  7 

2.5 Field site description 8 

Two field surveys were conducted in different geologies to evaluate the use of clustering as a 9 

tool for alleviating interpretational ambiguity. Both sites were examined thoroughly with SNMR 10 

and TEM to provide the basis for the subsequent clustering analysis. 11 

2.5.1 Kompedal 12 

The first field site is Kompedal, a national forest in the Central Region, Denmark. The local 13 

geology consists of meltwater sand and glacial tills with varying clay contents. The sparse 14 

borehole coverage finds sand shallowly, and the water table varies from 5 m to 12 m in depth. 15 

Two geophysical surveys have been conducted here using TEM and SNMR, respectively. The 16 

scope of the surveys was to delineate the water table on a regional scale and assess whether 17 

the shallow aquifer can be considered unconfined or semi-confined across the region. The 18 

TEM data were collected with the tTEM instrument (Auken et al., 2019) while driving along the 19 

gravel roads within the forest, as seen in Figure 2a in blue. ρ in the area are generally high, 20 

above 200 Ωm, with some layers of lower ρ found at depth. There is little to no contrast 21 

between the unsaturated and saturated part of the meltwater sand in ρ. The SNMR survey 22 

consists of 50 soundings acquired over five days in June 2021, spread across the forest as 23 

seen in Figure 2a (Vang et al., 2023). The SNMR survey found low WC (~ 5 %) and low T2
* 24 

values (~ 0.1 s) shallowly, with a sharp increase to higher WC (~ 25 %) at 6 m to 10 m depth. 25 

Layers with low WC and T2
* can be associated with both unsaturated sands, and clay-rich 26 

material. The section indicated in Figure 2a will be used to show the results of the combined 27 

cluster analysis. 28 

2.5.2 Endelave 29 

The second location is a small 13 km2 island, Endelave, in Kattegat, Denmark with a maximum 30 

elevation of 8 m. The island’s geology consists of glacial till, meltwater sands, and post-glacial 31 

sands, while boreholes intercept Paleogene clay at depth throughout the island. Generally, 32 

the glacial tills are found in the west part of the island, where the post-glacial sands are found 33 

to the north. TEM and SNMR surveys shown in Figure 2b were conducted at this more 34 
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geologically heterogeneous location to resolve possible saltwater intrusion and delineate the 1 

shallow aquifer found in the meltwater sands and tills. The TEM soundings were acquired in 2 

April 2022 and cover the majority of the island and show ρ below 150 Ωm for the entire area. 3 

The ρ resolve buried valley structures and a very conductive basement. By TEM alone it is not 4 

possible to distinguish Paleogene clay from the saltwater saturated sand. The SNMR survey 5 

consists of 51 soundings over eight days in July and October 2023 and finds high WC 6 

shallowly in the east and north part of the island, where the west part shows low WC and T2
*.  7 

  8 
Figure 2 a) The Kompedal survey area. SNMR (red) together with TEM (blue) was collected in the area. b) Map of 9 
Endelave survey with SNMR (red) and TEM (blue). Map data: © Google Maps 2024, UTM Zone: 32N. 10 

3 Results 11 

3.1 Kompedal case study 12 

3.1.1 Clustering analysis 13 

For our combined analysis, we begin by selecting the number of clusters, K, using the 14 

silhouette index. Figure 3 shows results from four different clustering analyses with two to five 15 

clusters for the Kompedal data set. Each cluster is labeled with its index and the number of 16 

data points within each cluster. In each cluster, the silhouette indices are sorted to give a 17 

higher index when moving up the y-axis. If most of the data within a given cluster have values 18 

above the average silhouette index, it is considered as well defined, while clusters with some 19 

data below are considered fairly defined, and with many data points below the average 20 

silhouette index they are poorly defined. In the two-cluster analysis in Figure 3a, we see that 21 

both clusters are well-defined with more than 300 members in each. With three clusters 22 

(Figure 3b), two are well-defined, while cluster 2 is poorly defined with many data points having 23 

a below-average silhouette index. In the four-cluster analysis, two clusters, cluster 1 and 24 
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cluster 4, become poorly defined, as seen in Figure 3c. Lastly, five clusters yield three poorly 1 

defined clusters (2, 3 and 4) with only few data points having a high membership score. Given 2 

the silhouette indices, either choosing two or three clusters is appropriate. Prior 3 

hydrogeological information can be used to further qualify the choice between these (Dumont 4 

et al., 2018) and in Kompedal, we expect three distinct hydrogeological units, unsaturated 5 

sand, saturated sand and underlying till. The low silhouette indices in cluster 2 in Figure 3b, is 6 

a product of large variation within the cluster, which can be expected in glacial environments 7 

as mixing occured during deposition. Finally, three clusters were chosen to subdivide the data 8 

into meaningful and decently determined clusters.   9 

 10 
Figure 3 Silhouette index analysis for the Kompedal dataset. Four clustering routines were run with different number 11 
of clusters, K, (a) two, (b) three, (c) four and (d) five. The sorted silhouette values are shown for each cluster with 12 
the average value indicated by the grey dashed line. 13 

Given three clusters, K-means clustering is used to partition the model parameters, WC, T2
*, 14 

and ρ. In Figure 4a, the three model parameters are shown in a scatter plot where the color 15 

of a point reflects the assigned cluster. The other three 2D scatter plots, Figure 4b, c, and d, 16 

show the clustering results projected onto a plane that reveals correlations between two of the 17 

three. Cluster 1 in blue, is characterized by a high WC and high T2
* value, and a high ρ. Table 18 

1 shows that large variation occurs within this unit in the SNMR parameters as seen in Figure 19 

4b. The unit is interpreted as a sandy aquifer given its high WC, high T2
*, and high ρ. The 20 
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yellow cluster 2 has the largest variation in ρ, hence the low average silhouette index, but 1 

generally with lower ρ values than the other two clusters seen in Figure 4c, and with a large 2 

range in WC. A layer with these signatures is consistent with a saturated sandy till to a more 3 

clay rich till, with low ρ. The overlap with cluster 1 in WC and T2
* in Figure 4b is interpreted as 4 

a gradual mixing of till and sands. Cluster 3 in red, has low T2
* and a low WC and high ρ, which 5 

corresponds to unsaturated sand. However, low SNMR parameters in high ρ could indicate a 6 

silty deposit with smaller pore sizes, but with a similar conductivity. In places where the red 7 

cluster is found shallowly, it is interpreted as a unsaturated sand, and at depth under the water 8 

table, it is intrepreted as a saturated silt.   9 

 10 
Figure 4 Clustering results from the Kompedal survey on three parameters: WC, T2

* and ρ. (a) all three parameters 11 
in a scatter, (b) WC and T2

*, (c) ρ and WC, and (d) ρ and T2
*. The color of each datapoint defines the assigned 12 

cluster; 1-blue, 2-yellow, and 3-red. 13 

 14 

 15 

 16 

Table 1: Cluster parameter bounds and interpreted geology for Kompedal.  17 
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Cluster  WC  

[m3/m3] 

T2
* [s] ρ [Ωm] Interpreted 

geology 

Label 

1 (blue) High  

[0.1-0.4] 

High  

[0.1-0.4] 

High  

[130-1000] 

Saturated 

sand aquifer 

SA (Sand Aquifer) 

2 (yellow) Medium  

[0.07-0.26] 

Medium  

[0.03-0.26] 

Low  

[20-300] 

Saturated 

till 

Ti (Till) 

3 (red) Low  

[0.04-0.18] 

Low  

[0.03-0.14] 

High  

[130-900] 

Unsaturated 

sand 

US (Unsaturated sand) 

or Si (Saturated silt)  

3.1.2 Spatial interpretation 1 

The three clusters are described in Table 1 and will be referred to by their labels, which are 2 

used in the figures to highlight their spatial extent. After assigning interpreted geologies to 3 

each cluster, we focus on their spatial position illustrated by a cross-section (location shown 4 

in Figure 2a). Consider section 1 in Figure 5, where the coincident data used in the clustering 5 

are shown as bars with colors associated with the assigned cluster. The US/Si cluster is 6 

situated mostly in the shallow subsurface extending from the surface down to depths of 5 m 7 

to 10 m. The grey lines track selected cluster boundaries at the sounding locations. The upper 8 

grey line in Figure 5 tracks the bottom of the US cluster and is interpreted to be a change from 9 

low-to-high saturation, since the US-cluster is defined by low WC and the underlying clusters 10 

have a higher WC. The SA-cluster is found in most soundings and has a variable thickness 11 

from 2 m to 17 m. The transition at sounding location 8, is from US to Ti-cluster likely due to 12 

lower ρ in this area. A second deeper grey line tracks the transition below the SA-cluster to 13 

the underlying Ti cluster.  14 

 15 
Figure 5 Clustering section from Kompedal where the partitioning of data is shown at every sounding. The grey 16 
lines track selected cluster boundaries. See Table 1 for cluster descriptions. 17 

To evaluate possible variations within the boundaries estimated from the clustering, the profile 18 

shown in Figure 5 is reproduced in Figure 6 with ρ values and WC and T2
*. Since clustering is 19 
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a discrete and often brutal partitioning of smoothly varying parameters, it is important to return 1 

to the original parameters for evaluation. The SNMR WC are shown as bars in Figure 6a and 2 

both T2
*(left part of bar) and T2(right part of bar) are shown side by side with the same color 3 

scale in Figure 6b and will be referred to as T2
*/ T2 profiles. The grey lines from the clustering 4 

are superimposed on this section to track variations within each cluster unit. Figure 6a displays 5 

the first section where shallow low WC and high ρ coinciding with the US-cluster where the 6 

T2
*/ T2 profiles show low values. Boreholes identify this unit as sand near sounding location 3 7 

and 6, which match the interpreted geology as an unsaturated sand. The upper grey line is 8 

tracking an increase in WC from ~ 15 % to ~30 % in Figure 6a and from ~ below 0.1 s to above 9 

0.15 s in T2
* in Figure 6b, while there is no contrast in ρ. The lack of structure in the ρ indicates 10 

that this is likely a saturation change, as a lithological change would generally be expected to 11 

coincide with a ρ contrast. The elevated T2
* is caused by less interaction with the grain surfaces 12 

because of increased saturation in the sand. Additionally, a borehole water table measurement 13 

coincides with this transition line at sounding location 6. The SA-cluster unit contains a range 14 

in WC from 20 % to 30 % and in T2
* from 0.15 s to 0.3 s, indicating slight variations within the 15 

cluster. The SA-Ti transition coincides with a decrease in WC and ρ, interpreted as a similar 16 

reduction in pore size, a product of an increase in fines content. The T2
* found in the Ti-cluster, 17 
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while quite varying, are generally lower than in the SA-cluster, consistent with the interpretation 1 

of increasing fines content at depth, as in a till.  2 

 3 
Figure 6 Profile of 8 SNMR soundings (bars) and TEM profile(background). Section 1 in Figure 2a. (a) SNMR WC, 4 
(b) a split bar with T2

* (left) and T2 (right). Boreholes at sounding location 3 and 6 are shifted ~40 m to avoid 5 
overlapping with the bars. Grey lines are tracking transitions between clusters in Figure 5. 6 

To further evaluate the accuracy of the ability to track water tables by the upper cluster 7 

transition, consider Figure 7, where water tables from clustering are compared to available 8 

borehole-measured water tables within 500 m of SNMR sites. The clustering water tables are 9 

picked as the transition from the low WC US-cluster to any underlying cluster, SA or Ti, as both 10 

have a high WC compared to the US-cluster. The red line has a slope of 1 and the uncertainty 11 

bars are based on the inversion layer thickness, as the clustering method is ternary (i.e., it has 12 

three options) and consequently, some layers found at cluster transitions could be assigned 13 

to either cluster. We see that clustering tends to overestimate the water table elevation in many 14 

cases. This is a product of clustering being a brute thresholding in the parameter space. In 15 

this geology, the threshold from the clustering occurs at slightly lower WC than those 16 

coinciding with the water table and produces too shallow estimates. The trend, however, is 17 

similar to a slope of 1, indicating that a higher threshold could provide a better resolution of 18 

the regional water table. Additionally, the distance between borehole and coincident SNMR 19 

and TEM models could add uncertainty for the comparison, but this uncertainty is expected to 20 

follow the slope of 1. The two data points with yellow outline, far from the middle axis, stem 21 
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from the north of the area where the water table was measured in 1980, yielding some 1 

uncertainty due to possible long-term temporal or seasonal changes. Overall, the clustering 2 

captures the water table trend within an unconfined aquifer at a regional scale in an automated 3 

manner. 4 

  5 
Figure 7 Borehole water table compared to the clustering water table at 12 SNMR locations with boreholes within 6 
500 m. The red line has a slope of 1 and the error bars on the clustering estimates are based on the inversion layer 7 
thickness to provide a type of uncertainty. Yellow points have water table measurements over 40 years old. 8 

3.2 Endelave case study 9 

3.2.1 Clustering analysis 10 

A similar methodology was used to examine the appropriate number of clusters for Endelave. 11 

Due to a more heterogeneous geology, four clusters were used to properly partition the data. 12 

Next, the partitioning of WC, T2
* and ρ is inspected. Consider Figure 8, where the clustering 13 

results are shown, represented by the three clustered parameters (Figure 8a) or two (Figure 14 

8b, c, d). First, the red cluster (1) is defined by quite low WC and T2
* values (Figure 8b), while 15 

the ρ varies from 10 Ωm to 120 Ωm. This cluster exhibits properties consistent with till 16 

containing varying sand content and affecting ρ (Figure 8c). The green cluster (2) has mainly 17 

high ρ, high WC, and medium T2
* values in Figure 8a. The high WC and ρ are properties 18 

associated with sand saturated aquifers. The yellow cluster (3) has similar SNMR attributes to 19 

the red cluster, with low WC and T2
*, but has a lower ρ range illustrated in Figure 8d. This unit 20 

is interpreted to be of Paleogene clay due to the very low ρ found in this cluster. The range of 21 

WC found within the yellow cluster could indicate that layers with low to medium sand 22 

contents, but with low ρ are grouped here. The last cluster, blue (4) has a distinct T2
* range in 23 
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Figure 8b and a large range of WC with ρ situated around 10 Ωm. The WC and T2
* values 1 

would indicate that this layer has aquifer properties usually associated with sand, while the ρ 2 

indicates this as a conductive material. This is interpreted as saltwater saturated sand. In 3 

general, the clusters are not as distinct within the Endelave dataset, as the glacial interaction 4 

with the deposited sediment has caused a mixing of lithologies. This is evident from the ρ 5 

values where none exceed 130 Ωm, whereas the Kompedal survey consisted of ρ from 50 6 

Ωm to 1000 Ωm. All the descriptions and interpreted geologies are found in Table 2. 7 

 8 
Figure 8 Clustering results from the Endelave survey on WC, T2

* and ρ. (a) all three in a scatter, (b) WC and T2
*, 9 

(c) ρ and WC, and (d) ρ and T2
*. The color of each datapoint defines the assigned cluster. 10 

 11 

 12 

 13 

 14 

 15 

Table 2: Cluster parameter bounds and interpreted geology for Kompedal. 16 
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 1 

3.2.2 Spatial interpretation 2 

Following the clustering we will examine their spatial extent on Endelave. We will show the 3 

results of two sections (Figure 2b). to see how the clustering performs in a more heterogenous 4 

setting. Consider first the section across the main shallow aquifer in Figure 9a, where we see 5 

a shallow Ti-unit corresponding to either a till or unsaturated sand. The SA-cluster unit has a 6 

thickness from 5 m to 12 m and is found below the Ti-cluster at sounding locations 3 to 6. 7 

Sounding location 1 is located 30 m from the coast, which aligns with the presence of the Sws-8 

cluster. The Ti-cluster at depth is interpreted as a decrease in pore size from an increased clay 9 

or silt content. At sounding 7, all layers are grouped as the Ti-cluster, a sign of low SNMR 10 

parameters throughout the entire sounding location. The deepest discretized layers at most 11 

sounding locations are grouped in the Cl-cluster, tracked by a grey line, indicating a drop in ρ, 12 

as expected from the Paleogene clay. 13 

To highlight possible saltwater intrusion, a section intersecting sounding locations at the coast 14 

is shown. The section in Figure 9b is quite complicated as it transects different geological 15 

regions. We consider three main points in this section, the Sws-cluster, the SA-cluster and the 16 

south end of the profile. In Figure 9b we see the Sws-cluster at sounding locations 1 to 3, 17 

defining a shallow and deep layer, while at sounding locations 6, 8 and 9 the cluster is seen 18 

shallowly at low elevations following the coast. The transition from the Sws-cluster to the 19 

underlying clusters is tracked by a grey line at sounding locations 1 to 3. Below the grey line 20 

at sounding locations 1 and 2, the layers are grouped with the Cl-cluster representing low ρ, 21 

lower T2
* and WCs. It is important to note that even with combined SNMR and TEM, it will be 22 

hard to distinguish between saltwater and freshwater clays as both will be conductive and 23 

have a low free water content and T2
* signatures in SNMR.  24 

From sounding locations 3 to 8, the SA-cluster is found with a varying thickness from 2m to 25 

10m. This unit, interpreted as the aquifer, is outlined in grey to compare with original parameter 26 

Cluster  WC [m3/m3] T2
* [s] ρ [Ωm] Interpreted geology Label 

1 (red) Low-medium 

[0.03-0.18] 

High 

[0.02-0.1] 

High  

[10-120] 

Till Ti (Till) 

2 

(green) 

High  

[0.15-0.40] 

Medium 

[0.04-0.13] 

High  

[15-120] 

Sandy aquifer SA  

(Sand aquifer) 

3 

(yellow) 

Low-medium  

[0.03-0.18] 

Low  

[0.02-0.1] 

Low  

[1-25] 

Paleogene clay Cl (Clay) 

4 (blue) Low-High 

 [0.07-0.40] 

High 

[0.07-0.21] 

Low  

[2-35] 

Saltwater sands Sws (Saltwater 

sand) 
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values and borehole information later. At the south end of the profile, the clustering divides 1 

layers into Cl- and Ti-clusters, associated with clay and till by their low WC and T2
*.  2 

 3 
Figure 9 Clustering sections from Endelave where the partitioning of data is shown at every sounding location. (a) 4 
Section 1 (b) Section 2 in Figure 2a. The grey lines track selected cluster boundaries. 5 

The discrete boundaries from the clusters are now used in the original parameter space to 6 

evaluate possible variations within the clusters and the estimated boundaries. In Figure 10, 7 

we consider the main shallow aquifer found on Endelave. The grey lines from Figure  are used 8 

to delineate cluster extents and each unit is assigned a cluster label. Shallowly, the Ti-unit 9 

coincides with low WC and a high ρ in Figure 10a. T2
*/T2 are low in this unit and boreholes 10 

reveal either till or unsaturated sand here, matching the clustering interpretation. The upper 11 

Ti-SA grey line tracks an increase in WC at four sounding locations and coincides with a 12 

lithological change from clay to sand in two boreholes and coincides with a water table 13 

measurement in a separate borehole. This is interpreted as a semi-confined system with a 14 

water table at the layer boundary due to shifts in geological deposits. The SA unit here consists 15 

of high WC and low to medium T2
* within a resistive unit. The boreholes identify this unit as 16 

sand or a mixture of sand and silt, which explains the range of WC grouped within this unit. 17 

The lower SA/TI transition tracks a decrease in WC, still with low to medium T2
* seen in Figure 18 

10b. The transition coincides with a decrease in ρ at sounding locations 1 and 2, and with a 19 

lithological boundary from sand to clay in a few boreholes. Furthermore, two boreholes 20 
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terminate exactly at this interface, which could indicate that the drillers hit something harder 1 

or more clay rich, prompting them to stop drilling. The Ti/Cl transition at depth tracks a 2 

decrease in ρ, which in the deep borehole is identified as a lithological boundary from clays 3 

and sand to Paleogene clay, agreeing with the clustering interpretations. This deep boundary 4 

is not seen in the SNMR-parameters as the Ti and Cl-clusters are only distinguishable by their 5 

ρ. 6 

 7 
Figure 10 Profile of 7 SNMR soundings (bars) and TEM ρ (background). Section 1 in Figure 2b. (a) SNMR WC (b) 8 
a split bar with T2

* (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure 9. 9 

After reviewing the section through the main shallow aquifer in Figure 10, we will assess a 10 

second, more complex section. The grey lines from Figure  will be used to delineate the cluster 11 

units and illustrate differences within the units. Consider now Figure 11, where the ρ and 12 

SNMR parameters are shown with lines following cluster transitions. The Sws unit is seen 13 

mainly at location 1 to 3 and is defined by high WC, very high T2
* and low ρ. At sounding 14 

location 8, a borehole finds sand coinciding with the Sws-cluster in agreement with the saline 15 

sand interpretation. The high T2
*/T2 associated with the Sws-cluster in Figure 11b is a product 16 

of limited compaction within the newly deposited saline sand in the coastal environments. 17 

Below the Sws-unit, the grey line tracks a transition to lower WC and T2
*, but maintaining the 18 

low ρ, which is defined by the Cl cluster. At sounding location 6, this transition is different with 19 

an increase in ρ tracking the border to the SA unit. Low WC at sounding locations 10 and 11 20 
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coincide with clay in a local borehole for the first 15 m where all layers are grouped within the 1 

Ti or Cl-clusters. The low water content and T2
* signature at these locations prevent them from 2 

being clustered with the saline sands in Sws, highlighting the value of SNMR to distinguish 3 

these conductive units. The gyttja layer found in the borehole coincides with a drop in WC due 4 

to the increases in organic matter and was grouped with the Cl-cluster (Mashhadi et al., 2024). 5 

 6 
Figure 11  Profile of 11 SNMR soundings (bars) and TEM ρ (background). Section 2 in Figure 2b. (a) SNMR WC 7 
(b) a split bar with T2

* (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure 9. 8 

By clustering on this dataset, we have proven the ability to identify regions of possible 9 

saltwater intrusion. Figure 12 shows which sounding locations have layers that cluster within 10 

the saltwater aquifer, the freshwater aquifer, that have layers of both clusters, or only have the 11 

till and clay clusters. The saltwater cluster is observed mostly at the northern sounding 12 

locations where the post-glacial sands are located, but also along the east coast. The main 13 

aquifer unit, SA, is found in the east and north parts of the island, while the west part is 14 

dominated by the low water content clusters, shown in yellow and red. One sounding location 15 

with both saline and freshwater clusters far from the coast, is observed in the north of the 16 

island. The closest TEM sounding was acquired in a lowland south of this sounding, with 17 

elevation almost at sea level, which might have issues with saltwater intrusion. There is also 18 

a wetland close to this location, which might have a higher clay content with low ρ. If the TEM 19 

https://doi.org/10.5194/egusphere-2025-406
Preprint. Discussion started: 30 April 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

and SNMR are not exactly coincident, some differences and anomalies in the clustering might 1 

occur. But in general, the K-means clustering is able to map this possible saltwater intrusion, 2 

which is a valuable asset in aquifer management. 3 

 4 
Figure 12 Sounding locations where salt water or fresh water has been identified. Locations with only clay and till 5 
clusters are shown with red and yellow. Map data: © Google Maps 2024, UTM Zone: 32N. 6 

4 Discussion 7 

In this study we investigated the use of clustering to combine the analysis of two geophysical 8 

methods, SNMR and TEM. Previously, the two methods were typically used together in either 9 

a joint-inversion or manual joint-interpretation approach. The limited availability of data has 10 

constrained the use of SNMR for clustering. Recent developments in SNMR have allowed for 11 

rapid acquisitions leading to much higher data densities (Grombacher et al., 2021) requiring a 12 

less subjective and fast interpretation scheme, such as clustering approaches. To track 13 

lithological boundaries using geophysics, it is necessary to have a contrast in layer parameters 14 

between the geological units. An example of this limitation in TEM occurs when saline sand 15 

lies above clay, as both have low ρ, creating little to no ρ contrast. In SNMR, a similar limitation 16 

occurs when distinguishing unsaturated sand and clay/till layers. SNMR can detect an 17 

increase in water content but cannot define whether the aquifer is unconfined or confined. 18 

Using these methods together can reduce ambiguities encountered when interpreting them 19 

separately, as they have complementary characteristics and different sensitivities. The TEM 20 
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ambiguity in the saline sands/clays example will be resolved by SNMR as a decrease in WC 1 

at the lithological boundary as SNMR is sensitive only to the quantity of water, not its salinity. 2 

In the SNMR unsaturated limit, TEM would resolve a resistive unit in the unconfined case and 3 

a conductive unit in the semi-confined or confined example. The ability to distinguish these 4 

layers and track them spatially between boreholes is why SNMR and TEM were chosen to 5 

find discrete boundaries using K-means clustering.  6 

K-means clustering on geophysical models offers a simple, automated approach to identifying 7 

lithological transitions. It allows for reproduceable boundary definitions without subjective 8 

interpretations of the geophysical models. Discretizing smoothly varying parameters into 9 

predefined clusters is, however, brutal and there will be variability within the unit definitions. 10 

The ability to return to the original parameter space with cluster boundaries is crucial in 11 

addressing subtle variations within units and can be used to evaluate cluster transitions.  12 

K-means clustering applied to geophysical models is not limited to SNMR and TEM 13 

parameters; it can also be extended to other collocated datasets with distinct sensitivities. For 14 

example, in areas where a deep water table is expected within a sand layer, seismic methods 15 

may be appropriate. However, because the seismic velocity of saturated sands can be similar 16 

to that of clays or tills, incorporating collocated TEM models can help reduce interpretational 17 

bias. Similarly, relying solely on TEM data may make it difficult to detect the water table due 18 

to limited resistivity contrast. 19 

In SNMR, correlations between WC and T2
* may exist. For example, in unsaturated sands, the 20 

low water content residing in the pores will be in close contact with the grain surfaces, resulting 21 

in interactions leading to low T2
*/T2. Since water content is proportional to signal amplitude, in 22 

low WC environments, low signal amplitude results in reduced confidence in the T2
* estimates. 23 

When such parameters are linked, it might be of interest to simplify the approach by clustering 24 

on the product of water content and T2
*. Thus, combining these two parameters may help 25 

reduce the influence of low-confidence T2
* values in low water content environments. A similar 26 

option is to use a principal component analysis to reduce the basis to two parameters that 27 

describe the most variance, which in the Kompedal case would be resistivity and the product 28 

of the SNMR parameters. However, in more complex geologies such as Endelave, a decrease 29 

in basis dimension may reduce the ability to distinguish layers of high WC and low T2
* from 30 

layers with low WC and high T2
*. Through examining the data’s variation and correlation, we 31 

can make informed decisions about whether to decrease the parameter space.    32 

In this study, we focused on interpreting two survey areas using K-means clustering, which 33 

proved sufficient in meaningfully partitioning data and identifying lithological boundaries. One 34 

feature of the employed K-means clustering approach is the need to specify clusters 35 
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beforehand. In this study we based the choice of clusters on the silhouette index and prior 1 

geological information about the area. One alternative study uses agglomerative hierarchical 2 

clustering on SkyTEM data, which avoids selecting the number of clusters by starting with one 3 

cluster and subdividing until each data point has its own cluster (Dumont et al., 2018). This 4 

can alleviate some of the choices made for the silhouette index analyses and provide a better 5 

understanding of how clusters are further subdivided. A second challenge is to attribute 6 

uncertainties to the layer boundaries picked by the discrete K-means clustering. Here, others 7 

use fuzzy C-means where data points are assigned a membership score and can be partial 8 

members of more than one cluster (Paasche et al., 2007). Applying the fuzzy C-means can 9 

give an estimate of uncertainty for the picked cluster boundaries, i.e., if a data point could be 10 

a member of several clusters, it is less certain. This could apply to the Endelave data where 11 

the saline intrusion cluster in places could overlap with the freshwater cluster.  12 

Since clustering is performed on coincident values, we are limited by the lowest dimension 13 

dataset, which in this case is the SNMR, e.g. on Endelave the survey consists of 51 soundings 14 

while there are over 23000 TEM soundings in the same area. This reduction in data space 15 

disregards large amounts of TEM data, which of course have valuable regional information, 16 

but lack coincident SNMR parameters. Additionally, lower data quantity can lead to clusters 17 

not representable for the area. If SNMR information could be extrapolated to the full TEM 18 

domain through appropriate spatially variable measures, it would allow for clustering on a 19 

much larger data set. Future research will focus on extrapolating SNMR parameters across 20 

the full TEM domain. This would enable a subdivision of the full TEM domain based on the 21 

coincident data clusters, and it will be possible better to delineate areas of potential saline 22 

intrusion spatially.  23 

5 Conclusion  24 

Through two field studies we demonstrated the automated spatial identification and separation 25 

of hydrogeological units in large scale geophysical campaigns. Recent improvements in the 26 

data acquisition rates of SNMR now offer data volumes sufficient to exploit clustering 27 

approaches when combining these data with other geophysical data. K-means clustering of 28 

complementary SNMR and TEM models is shown to provide a non-subjective approach, 29 

where enhanced hydrogeological interpretations can be formed by exploiting the 30 

complementary nature of two data types. To detect lithological boundaries, they must 31 

correspond to a contrast in geophysical properties. SNMR is shown to provide value when 32 

discriminating clay-rich sediments from saline saturated sand conditions, a challenging task 33 

based on only TEM models. Similarly, TEM is able to separate low-water content conditions 34 

from clay-rich conditions, which is impossible with SNMR alone. This is key to discriminating 35 
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between unconfined and semi-confined conditions. A silhouette index-based approach, 1 

combined with the a priori knowledge of the likely number of lithological units present, is shown 2 

to be a robust measure for selecting the number of clusters.  3 

In the examples, clustering of NMR and TEM data provides a more complete characterization 4 

of local hydrogeological conditions than what can be achieved by each data set separately. 5 
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