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8 Abstract

9 Local characterization of groundwater systems is critical for managing and protecting
10  vulnerable resources. Geophysical methods can provide dense imaging of subsurface
11 parameters to delineate lithological boundaries and water tables for hydrogeological
12 investigation. Though, using a single geophysical method for determining lithologies can yield
13  erroneous interpretations as different lithologies can have similar properties. By using several
14  geophysical methods, it is possible to reduce this risk and better assign likely lithologies to
15  subsurface units. We present two case studies where transient electromagnetic (TEM) and
16  surface nuclear magnetic resonance (SNMR) are used in combination to delineate
17  hydrogeological structures. Novel spatially constrained inversion in SNMR was used to
18  provide horizontal consistency between soundings. Three coincident parameters, resistivity
19 from the TEM measurements and water content and relaxation time from the SNMR
20 measurements were used in a K-means clustering scheme to resolve subsurface structures.
21 The K-means clustering was evaluated with a silhouette index to pick the number of clusters.
22 After clustering, each cluster was assigned a hydrogeological description based on the distinct
23 features in the three parameters, e.g. a low resistivity, high water content, and high T, is
24  assigned as saltwater saturated sand. In the first case study, the clusters enabled improved
25  resolution of a regional water table in an unconfined aquifer setting by the multi-geophysical
26 approach. The water table estimates were positively evaluated against multiple boreholes
27  within 500 m of coincident geophysical models. The second case study illustrates how
28  clustering, of SNMR and TEM models, can delineate saltwater intrusion in an island coastal
29  aquifer, which would not be possible with any of these methods individually. Additionally, the
30 clustering resolved the main shallow aquifer on the island. Our work illustrates how the
31  combination of geophysical data can be used to improve resolution of hydrogeological layers

32  and reduce interpretational bias.
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1 Introduction

Climate-resilient groundwater management hinges on the need for detailed characterization
of local groundwater systems (Dragoni & Sukhija, 2008). Historically, lithological descriptions
of wells have been used to establish geological models to forecast local groundwater behavior
and inform conceptual models of local systems (van Roosmalen et al., 2007). The high cost
associated with drilling yields geological maps that are generally based on sparse point
coverage, with long-distance interpolation, and simplicity assumptions between observations
where structures may actually be complex. To address these data sparsity issues, geophysics

can be used to delineate structures non-invasively, giving high resolution imaging of the
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subsurface to complement direct borehole observations (Binley et al., 2015). Methods based
11 on imaging of subsurface electrical properties are used extensively in hydrological
12 investigations, where spatial variations in the electrical properties, specifically the resistivity,
13  of the subsurface are used to study pollution, explore groundwater resources, and delineate
14  saltwater interfaces, among many other applications (Binley et al., 2015). Within methods
15  imaging electrical properties, electromagnetic (EM) methods are widely used. They operate
16  inductively by creating a varying magnetic field inducing eddy-currents in the ground
17  (Nabighian & Macnae, 1991). The secondary magnetic field produced by the decaying eddy-
18  currents is measured inductively at the surface. The measurements are rapid, which leads to
19  high data acquisition rates that enable mapping of large areas using towed or airborne
20  platforms (e.g. Auken et al., 2019; Sarensen and Auken, 2004). The EM data are translated
21 into 1D models of resistivities by inversion (Christiansen et al., 2006), providing valuable
22 insights into local (hydro-)geology. A limitation in these methods is that they rely on
23  inconsistent links between lithology and resistivity. An implication of this is that assigning
24  lithology to a specific electrical resistivity requires local knowledge of the link between
25  resistivity and the associated lithology or geological unit (Dickinson et al., 2010). A common
26  challenge is that different geological units have overlapping resistivity ranges making unique

27  identification based on resistivity alone difficult or sometimes impossible.

28  Surface nuclear magnetic resonance (SNMR) provides direct sensitivity to water residing in
29 large pores (Hertrich et al., 2007; Legchenko et al., 2002). By transmitting an excitation pulse
30 oscillating at a specific frequency proportional to the Earth’s magnetic field strength, the
31  magnetic moment of hydrogen nuclei is shifted from its equilibrium state (Yaramanci et al.,
32 1999). After terminating the pulse, the buildup magnetization decays and is related to the
33  subsurface water quantity and pore parameters. This allows SNMR to track changes in water
34  content across lithological boundaries and can provide valuable information on pore sizes. A
35 limitation in SNMR is the inability to distinguish unsaturated sand from clay, as both will be

36  seen with low WC, in the clays caused by the magnetization decaying extremely rapidly in
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small pores making it immeasurable with the SNMR. As such, SNMR cannot distinguish
unconfined aquifers from semi-confined or confined aquifers without supplemental data, as
the increase in water content cannot be established to be a saturation or a lithological
transition (Behroozmand et al., 2015), Fig. 1. However, the combined interpretation of SNMR
and TEM data, sensitive to different properties, may alleviate ambiguities in distinguishing
between for instance unsaturated sand and clays (SNMR ambiguity) or clays and saline

saturated sands (TEM ambiguity), which is highly relevant for coastal studies of
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unconsolidated settings (Costabel et al., 2017).

9 Consider the example of an unconfined/confined system, where SNMR cannot determine
10  whether a transition from low to high water content marks the water table or a lithological shift
11 from clays to sands. TEM can address this as it would resolve the conductive clay layer if
12 present and delineate the lithological change to sand as seen in Figure 1. If it was an
13 unconfined system, the TEM would image high resistivities in both layers while the saturation
14 change is tracked by SNMR. Another example involves saline intrusion, where TEM cannot
15  differentiate between saline sand and clay. If it is indeed a transition only in salinity, not water
16  content, SNMR would reveal continuous high water content across the salinity boundary.
17  SNMR alone would not be able to distinguish freshwater sand from saline sand, as it is only

18  sensitive to the abundance of water and not salinity.
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20 Figure 1 Different hydrogeological units resolved with TEM and SNMR. In dashed boxes, only one method is
21 used, and the overlapping units show the ambiguities found. T2" can be implemented to further separate units.
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A multiple data type approach requires forming interpretations consistent with multiple
geophysical model types simultaneously, which can be achieved through manual inspection
of disparate data types. This enables one to distinguish hydrogeological layers through
combined interpretation of all data types, but requires subjective choices regarding boundary
delineation. An alternative approach employs statistical correlations across separate
parameters to partition these into different clusters. One such approach is K-means clustering,
which enables the subdivision of datasets based on multiple parameters (Kodinariya &
Makwana, 2013). Different clustering approaches have also previously been applied to

geophysical data and focus primarily on single source datasets, such as large EM datasets
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(Dumont et al., 2018) or large electrical resistivity datasets (Song et al., 2010). Some studies
11 investigate clustering on derived parameters such as clay fraction and resistivity, both linked
12 to EM surveys (Foged et al., 2014). Clustering across disparate data types, such as Bouguer
13 anomaly data and magnetic data has been shown to improve the resolution of mineral deposits
14 (Sun and Li, 2016). A study focused on delineating structures in urban settings by clustering
15  on multichannel analysis of surface waves (MASW) and electrical methods to evaluate soil
16  foundation structure (Le et al., 2022) and found the K-means clustering to resolve important

17  structures in the shallow subsurface.

18 In this study, we demonstrate the benefits of combined SNMR and TEM data collection, where
19  K-means clustering based on coincident models in two survey areas is shown to enhance
20 interpretations and address ambiguities that persist if only a single data type is considered.
21 The first example includes mapping of the water table in an unconfined meltwater plain aquifer,
22  where a combined approach is used to address ambiguity as to the upper aquifer being
23  confined/unconfined/or semi-confined across the investigated region. A second example taken
24  from a small island shows how the method can delineate salt-water intrusion from clay-rich
25 regions through a combined interpretation. We demonstrate a workflow for handling

26  interpretations of SNMR and TEM simultaneously reducing possible interpretational bias.

27 2 Methods

28 2.1 Transient electromagnetic

29 In this study we use Transient Electromagnetics (TEM) to resolve subsurface resistivities. The
30 tTEM instrument (Auken et al., 2019) was used in both field areas and can resolve the
31 resistivity structure of the top 70m, however, here only the top 25m of the full model domain
32 are used in the analyses. The induced voltages recorded by the tTEM are translated to 1D
33  resistivity models by Spatially Constrained Inversion (SCI) using Aarhusinv (Auken et al.,

34  2015; Viezzoli et al., 2009). The model is discretized into 30 layers with thicknesses varying
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1 from 1m shallowly, to 10m at depth following resolution limitations at depth. The resulting

2 resistivity models will be used for subsequent clustering.

2.2 Surface nuclear magnetic resonance

In this survey we use a recently developed technique for SNMR called steady-state. The
steady-state has an increased stacking rate leading to a higher signal amplitude and a
decrease in acquisition times (Grombacher et al., 2021). A set of transmit pulses, optimized to
resolve the top 25m, was employed in both studies with the Apsu instrument with an
acquisition time of 25min per site (Larsen et al., 2020). The resolved water content and the

relaxation parameter, T.", are used in the subsequent clustering. The SNMR models are
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discretized into 31 layers down to 50m, increasing in thickness at depth from 0.5 m to 4 m.
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The resistivity structure from the nearest TEM sounding is used for the inversion.

12 One limitation in SNMR is to detect water residing in very small pores. Because of instrument
13  dead times associated with transmitting the excitation pulse, receiving data immediately after
14  pulse termination is not possible. Signals from very small pores can therefore partially or fully
15  decay before the instrument has begun recording data. As such, the magnetization from water
16 residing in very small pores decay prior to data recording, which prevents observation of small
17  pore water in SNMR. As such, SNMR water contents can be interpreted as a measure of “free”
18  water or an effective porosity. T, relaxation time is linked to pore sizes with low values
19  occurring in small pores, while large pores have large values. This can be used to differentiate

20  high water content units by their pore sizes.

21 2.3 Inversion considerations

22  Traditionally, 1D SNMR inversions are most commonly treated separately as limited
23  measurements are carried out. However, recent acquisition speed-ups enabled by steady-
24  state approaches have significantly enhanced spatial data density, which enables the use of
25  horizontal constraints linking inversions of nearby measurement sites (Grombacher et al.,
26 2021). One such example is the use of laterally constrained inversion (LCI) for SNMR as
27  proposed by Behroozmand et al. (2012) where neighboring sites in a transect can be
28  connected. Here, we add a dimension to the constraints using a spatially constrained inversion
29  (SCI) framework, not only to bind models in line, but all neighboring models. Delauney
30 triangulation is used to find the relevant neighbors as in Viezzoli et al. (2009). The strength of
31 lateral bounds is scaled by the distance between models, with a maximum strength defined
32 when models are closer than a threshold distance. This threshold distance is typically set to

33  the nominal or average distance between neighboring soundings (Vang et al., 2024).

34  The computational load increases immensely when implementing SCI with many layers and

35 parameters. To reduce the number of iterations, the SCI starting models are defined by single
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1 site inversion results. This allows the SCI to converge within a few iterations. The TEM data

2 are inverted separately with an SCI for the entire survey.

2.4 Clustering

Large datasets enable statistical approaches to inform on significant hydrogeological units. In
the following examples, datasets are composed of 50 and 51 coincident SNMR/TEM
soundings where a K-means clustering is employed (Kanungo et al., 2002) on their model
parameters. The first step in this type of clustering is to select the number of clusters, K, into
which the data sets will be clustered (Kodinariya & Makwana, 2013). After selecting the

number of clusters, the algorithm makes an initial guess for the position of each cluster center
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in the parameter domain. The Euclidean distance from each data point to the cluster center is
11 calculated, and each data point is assigned to the nearest cluster. The total distance from all
12 data to their assigned clusters is then iteratively minimized through updating cluster center

13 locations until either a minimum distance or a maximum number of iterations is reached.

14  To improve clustering of datasets for parameters exhibiting different sensitivities and spanning
15  different ranges, normalization was used to ensure that each parameter has the same weight
16 in the clustering algorithm. Here, we use a Z-score for normalization, where x is either
17  resistivity (p), water content (WC), or relaxation parameter (T2"):

1yn
X Niz1 X0

- (1)

18 Xinorm =

19  where o is the standard deviation on the cloud of parameters from the inversion, x; is the
20  parameter value for the " data point and n number of data points. Following the normalization,
21 we use the Scikit learn package in Python for the clustering and silhouette analysis
22  (Pedregosa et al, 2011).

23 In this study, the number of clusters is chosen based on the Silhouette index, which calculates

24  the membership S; of each data point, i:

25 S, =—2ra

" max(ayb;)’

Sie[-1,1] ()

26 where a;is average distance from data point i to other data points in the same assigned cluster,
27  b;is the minimum average distance of the /' data point to all other data points in other clusters.
28  The resulting index, or membership score, is a measure of how well a data point is associated
29  with the assigned cluster. If the score of a given data point is 1 it infers that the data point is
30 correctly assigned, while a score of -1 indicates that the data is wrongly assigned (Kodinariya
31 & Makwana, 2013; Shutaywi & Kachouie., 2021). By evaluating these results, we can qualify
32 the preferred number of clusters. In some cases, prior information can be used to fix the

33 number of clusters, such as prior geological knowledge of the area (Dumont et al.,2018).
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In this study we clustered on three parameters: WC, T2, and p. The two geophysical methods
used in this study have different sensitive volumes. SNMR inversion is discretized finely with
30 layers down to 50 m and the TEM has 30 layers in 120 m. To cluster on coincident values,
a projection and averaging of the TEM p models onto the SNMR discretization is used. All
TEM soundings within 60 m of an SNMR sounding are included. If there is no p model (TEM
sounding) within 60 m, the nearest is used and mapped onto the SNMR discretization. This
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allows all SNMR points to be matched and prevents a reduction in data points.
8 2.5 Field site description

9  Two field surveys were conducted in different geologies to evaluate the use of clustering as a
10  tool for alleviating interpretational ambiguity. Both sites were examined thoroughly with SNMR

11 and TEM to provide the basis for the subsequent clustering analysis.
12 2.5.1 Kompedal

13  The first field site is Kompedal, a national forest in the Central Region, Denmark. The local
14  geology consists of meltwater sand and glacial tills with varying clay contents. The sparse
15  borehole coverage finds sand shallowly, and the water table varies from 5 m to 12 m in depth.
16 Two geophysical surveys have been conducted here using TEM and SNMR, respectively. The
17  scope of the surveys was to delineate the water table on a regional scale and assess whether
18  the shallow aquifer can be considered unconfined or semi-confined across the region. The
19  TEM data were collected with the tTEM instrument (Auken et al., 2019) while driving along the
20  gravel roads within the forest, as seen in Figure 2a in blue. p in the area are generally high,
21 above 200 Om, with some layers of lower p found at depth. There is little to no contrast
22  between the unsaturated and saturated part of the meltwater sand in p. The SNMR survey
23  consists of 50 soundings acquired over five days in June 2021, spread across the forest as
24  seen in Figure 2a (Vang et al., 2023). The SNMR survey found low WC (~ 5 %) and low T,
25  values (~ 0.1 s) shallowly, with a sharp increase to higher WC (~ 25 %) at 6 m to 10 m depth.
26  Layers with low WC and T, can be associated with both unsaturated sands, and clay-rich
27  material. The section indicated in Figure 2a will be used to show the results of the combined

28  cluster analysis.
29  2.5.2 Endelave

30 The second location is a small 13 km? island, Endelave, in Kattegat, Denmark with a maximum
31  elevation of 8 m. The island’s geology consists of glacial till, meltwater sands, and post-glacial
32  sands, while boreholes intercept Paleogene clay at depth throughout the island. Generally,
33  the glacial tills are found in the west part of the island, where the post-glacial sands are found

34 to the north. TEM and SNMR surveys shown in Figure 2b were conducted at this more
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geologically heterogeneous location to resolve possible saltwater intrusion and delineate the

2  shallow aquifer found in the meltwater sands and tills. The TEM soundings were acquired in
3 April 2022 and cover the majority of the island and show p below 150 Qm for the entire area.
4  The presolve buried valley structures and a very conductive basement. By TEM alone it is not
5 possible to distinguish Paleogene clay from the saltwater saturated sand. The SNMR survey
6 consists of 51 soundings over eight days in July and October 2023 and finds high WC
7  shallowly in the east and north part of the island, where the west part shows low WC and T,
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9 Figure 2 a) The Kompedal survey area. SNMR (red) together with TEM (blue) was collected in the area. b) Map of
10 Endelave survey with SNMR (red) and TEM (blue). Map data: © Google Maps 2024, UTM Zone: 32N.

11 3 Results
12 3.1 Kompedal case study

13  3.1.1 Clustering analysis

14  For our combined analysis, we begin by selecting the number of clusters, K, using the
15  silhouette index. Figure 3 shows results from four different clustering analyses with two to five
16 clusters for the Kompedal data set. Each cluster is labeled with its index and the number of
17  data points within each cluster. In each cluster, the silhouette indices are sorted to give a
18  higher index when moving up the y-axis. If most of the data within a given cluster have values
19  above the average silhouette index, it is considered as well defined, while clusters with some
20 data below are considered fairly defined, and with many data points below the average
21 silhouette index they are poorly defined. In the two-cluster analysis in Figure 3a, we see that
22 both clusters are well-defined with more than 300 members in each. With three clusters
23  (Figure 3b), two are well-defined, while cluster 2 is poorly defined with many data points having

24  a below-average silhouette index. In the four-cluster analysis, two clusters, cluster 1 and
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cluster 4, become poorly defined, as seen in Figure 3c. Lastly, five clusters yield three poorly
defined clusters (2, 3 and 4) with only few data points having a high membership score. Given
the silhouette indices, either choosing two or three clusters is appropriate. Prior
hydrogeological information can be used to further qualify the choice between these (Dumont
et al., 2018) and in Kompedal, we expect three distinct hydrogeological units, unsaturated
sand, saturated sand and underlying till. The low silhouette indices in cluster 2 in Figure 3b, is
a product of large variation within the cluster, which can be expected in glacial environments

as mixing occured during deposition. Finally, three clusters were chosen to subdivide the data
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into meaningful and decently determined clusters.
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11 Figure 3 Silhouette index analysis for the Kompedal dataset. Four clustering routines were run with different number
12 of clusters, K, (a) two, (b) three, (c) four and (d) five. The sorted silhouette values are shown for each cluster with
13 the average value indicated by the grey dashed line.

14 Given three clusters, K-means clustering is used to partition the model parameters, WC, T2,
15  and p. In Figure 4a, the three model parameters are shown in a scatter plot where the color
16 of a point reflects the assigned cluster. The other three 2D scatter plots, Figure 4b, ¢, and d,
17  show the clustering results projected onto a plane that reveals correlations between two of the
18  three. Cluster 1 in blue, is characterized by a high WC and high T, value, and a high p. Table
19 1 shows that large variation occurs within this unit in the SNMR parameters as seen in Figure
20 4b. The unit is interpreted as a sandy aquifer given its high WC, high T,", and high p. The
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yellow cluster 2 has the largest variation in p, hence the low average silhouette index, but
generally with lower p values than the other two clusters seen in Figure 4c, and with a large
range in WC. A layer with these signatures is consistent with a saturated sandy till to a more
clay rich till, with low p. The overlap with cluster 1 in WC and T, in Figure 4b is interpreted as
a gradual mixing of till and sands. Cluster 3 in red, has low T>" and a low WC and high p, which
corresponds to unsaturated sand. However, low SNMR parameters in high p could indicate a
silty deposit with smaller pore sizes, but with a similar conductivity. In places where the red

cluster is found shallowly, it is interpreted as a unsaturated sand, and at depth under the water
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table, it is intrepreted as a saturated silt.
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11 Figure 4 Clustering results from the Kompedal survey on three parameters: WC, T2" and p. (a) all three parameters
12 in a scatter, (b) WC and T2', (c) p and WC, and (d) p and T2". The color of each datapoint defines the assigned
13 cluster; 1-blue, 2-yellow, and 3-red.

14

15

16

17 Table 1: Cluster parameter bounds and interpreted geology for Kompedal.

10
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Cluster wcC T, [s] p [Qm] Interpreted | Label
[m3/m?] geology

1 (blue) High High High Saturated SA (Sand Aquifer)
[0.1-0.4] [0.1-0.4] [130-1000] @ sand aquifer

2 (yellow) | Medium Medium Low Saturated Ti (Till)
[0.07-0.26] [0.03-0.26] | [20-300] till

3 (red) Low Low High Unsaturated | US (Unsaturated sand)
[0.04-0.18] [0.03-0.14] | [130-900] | sand or Si (Saturated silt)
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3.1.2 Spatial interpretation

The three clusters are described in Table 1 and will be referred to by their labels, which are
used in the figures to highlight their spatial extent. After assigning interpreted geologies to
each cluster, we focus on their spatial position illustrated by a cross-section (location shown
in Figure 2a). Consider section 1 in Figure 5, where the coincident data used in the clustering
are shown as bars with colors associated with the assigned cluster. The US/Si cluster is
situated mostly in the shallow subsurface extending from the surface down to depths of 5 m
to 10 m. The grey lines track selected cluster boundaries at the sounding locations. The upper

grey line in Figure 5 tracks the bottom of the US cluster and is interpreted to be a change from
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low-to-high saturation, since the US-cluster is defined by low WC and the underlying clusters

-
-

have a higher WC. The SA-cluster is found in most soundings and has a variable thickness

N
N

from 2 m to 17 m. The transition at sounding location 8, is from US to Ti-cluster likely due to

-
w

lower p in this area. A second deeper grey line tracks the transition below the SA-cluster to

-
I

the underlying Ti cluster.
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16 Figure 5 Clustering section from Kompedal where the partitioning of data is shown at every sounding. The grey

17 lines track selected cluster boundaries. See Table 1 for cluster descriptions.

18  To evaluate possible variations within the boundaries estimated from the clustering, the profile

19 shown in Figure 5 is reproduced in Figure 6 with p values and WC and T2". Since clustering is

11
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a discrete and often brutal partitioning of smoothly varying parameters, it is important to return
to the original parameters for evaluation. The SNMR WC are shown as bars in Figure 6a and
both T>'(left part of bar) and T(right part of bar) are shown side by side with the same color
scale in Figure 6b and will be referred to as T2/ T2 profiles. The grey lines from the clustering
are superimposed on this section to track variations within each cluster unit. Figure 6a displays
the first section where shallow low WC and high p coinciding with the US-cluster where the
T,'/ T2 profiles show low values. Boreholes identify this unit as sand near sounding location 3
and 6, which match the interpreted geology as an unsaturated sand. The upper grey line is

tracking an increase in WC from ~ 15 % to ~30 % in Figure 6a and from ~ below 0.1 s to above
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0.15 s in T2" in Figure 6b, while there is no contrast in p. The lack of structure in the p indicates
11 that this is likely a saturation change, as a lithological change would generally be expected to
12 coincide with a p contrast. The elevated T, is caused by less interaction with the grain surfaces
13  because of increased saturation in the sand. Additionally, a borehole water table measurement
14  coincides with this transition line at sounding location 6. The SA-cluster unit contains a range
15 in WC from 20 % to 30 % and in T, from 0.15 s to 0.3 s, indicating slight variations within the
16  cluster. The SA-Ti transition coincides with a decrease in WC and p, interpreted as a similar

17 reduction in pore size, a product of an increase in fines content. The T found in the Ti-cluster,

12
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1 while quite varying, are generally lower than in the SA-cluster, consistent with the interpretation

2  of increasing fines content at depth, as in a till.
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4 Figure 6 Profile of 8 SNMR soundings (bars) and TEM profile(background). Section 1 in Figure 2a. (a) SNMR WC,
5 (b) a split bar with T2" (left) and Tz (right). Boreholes at sounding location 3 and 6 are shifted ~40 m to avoid
6 overlapping with the bars. Grey lines are tracking transitions between clusters in Figure 5.
7  To further evaluate the accuracy of the ability to track water tables by the upper cluster

8 transition, consider Figure 7, where water tables from clustering are compared to available

9  borehole-measured water tables within 500 m of SNMR sites. The clustering water tables are
10  picked as the transition from the low WC US-cluster to any underlying cluster, SA or Ti, as both
11 have a high WC compared to the US-cluster. The red line has a slope of 1 and the uncertainty
12 bars are based on the inversion layer thickness, as the clustering method is ternary (i.e., it has
13  three options) and consequently, some layers found at cluster transitions could be assigned
14 toeither cluster. We see that clustering tends to overestimate the water table elevation in many
15  cases. This is a product of clustering being a brute thresholding in the parameter space. In
16 this geology, the threshold from the clustering occurs at slightly lower WC than those
17  coinciding with the water table and produces too shallow estimates. The trend, however, is
18  similar to a slope of 1, indicating that a higher threshold could provide a better resolution of
19  the regional water table. Additionally, the distance between borehole and coincident SNMR
20 and TEM models could add uncertainty for the comparison, but this uncertainty is expected to

21 follow the slope of 1. The two data points with yellow outline, far from the middle axis, stem

13
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from the north of the area where the water table was measured in 1980, yielding some

2 uncertainty due to possible long-term temporal or seasonal changes. Overall, the clustering
3  captures the water table trend within an unconfined aquifer at a regional scale in an automated
4 manner.
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6 Figure 7 Borehole water table compared to the clustering water table at 12 SNMR locations with boreholes within
7 500 m. The red line has a slope of 1 and the error bars on the clustering estimates are based on the inversion layer
8 thickness to provide a type of uncertainty. Yellow points have water table measurements over 40 years old.

9 3.2 Endelave case study

10  3.2.1 Clustering analysis

11 Asimilar methodology was used to examine the appropriate number of clusters for Endelave.
12 Due to a more heterogeneous geology, four clusters were used to properly partition the data.
13 Next, the partitioning of WC, T>" and p is inspected. Consider Figure 8, where the clustering
14 results are shown, represented by the three clustered parameters (Figure 8a) or two (Figure
15 8D, c, d). First, the red cluster (1) is defined by quite low WC and T values (Figure 8b), while
16 the p varies from 10 Qm to 120 Qm. This cluster exhibits properties consistent with fill
17  containing varying sand content and affecting p (Figure 8c). The green cluster (2) has mainly
18  high p, high WC, and medium T values in Figure 8a. The high WC and p are properties
19  associated with sand saturated aquifers. The yellow cluster (3) has similar SNMR attributes to
20 the red cluster, with low WC and T, but has a lower p range illustrated in Figure 8d. This unit
21 s interpreted to be of Paleogene clay due to the very low p found in this cluster. The range of
22  WC found within the yellow cluster could indicate that layers with low to medium sand

23 contents, but with low p are grouped here. The last cluster, blue (4) has a distinct T2 range in

14
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Figure 8b and a large range of WC with p situated around 10 Qm. The WC and T2 values
would indicate that this layer has aquifer properties usually associated with sand, while the p
indicates this as a conductive material. This is interpreted as saltwater saturated sand. In
general, the clusters are not as distinct within the Endelave dataset, as the glacial interaction
with the deposited sediment has caused a mixing of lithologies. This is evident from the p
values where none exceed 130 Qm, whereas the Kompedal survey consisted of p from 50

Qm to 1000 Om. All the descriptions and interpreted geologies are found in Table 2.

(a) (b)

(c)

0.2-
0.3
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£ 021 a
§‘ 01-
(@]
3
0.1 |

Figure 8 Clustering results from the Endelave survey on WC, T2" and p. (a) all three in a scatter, (b) WC and T2/,
(c) p and WC, and (d) p and T2". The color of each datapoint defines the assigned cluster.

Table 2: Cluster parameter bounds and interpreted geology for Kompedal.

15
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Cluster | WC [m®m?® | T, [s] p [Qm] | Interpreted geology | Label

1 (red) Low-medium | High High Till Ti (Till)
[0.03-0.18] [0.02-0.1] | [10-120]

2 High Medium High Sandy aquifer SA

(green) | [0.15-0.40] [0.04-0.13] | [15-120] (Sand aquifer)

3 Low-medium | Low Low Paleogene clay ClI (Clay)

(yellow) | [0.03-0.18] [0.02-0.1] | [1-25]

4 (blue) | Low-High High Low Saltwater sands Sws (Saltwater
[0.07-0.40] [0.07-0.21] | [2-35] sand)

RN

3.2.2 Spatial interpretation

Following the clustering we will examine their spatial extent on Endelave. We will show the
results of two sections (Figure 2b). to see how the clustering performs in a more heterogenous
setting. Consider first the section across the main shallow aquifer in Figure 9a, where we see
a shallow Ti-unit corresponding to either a till or unsaturated sand. The SA-cluster unit has a
thickness from 5 m to 12 m and is found below the Ti-cluster at sounding locations 3 to 6.
Sounding location 1 is located 30 m from the coast, which aligns with the presence of the Sws-

cluster. The Ti-cluster at depth is interpreted as a decrease in pore size from an increased clay

O O 00 N O 0o~ W N

or silt content. At sounding 7, all layers are grouped as the Ti-cluster, a sign of low SNMR
11 parameters throughout the entire sounding location. The deepest discretized layers at most
12 sounding locations are grouped in the Cl-cluster, tracked by a grey line, indicating a drop in p,

13  as expected from the Paleogene clay.

14 To highlight possible saltwater intrusion, a section intersecting sounding locations at the coast
15 is shown. The section in Figure 9b is quite complicated as it transects different geological
16 regions. We consider three main points in this section, the Sws-cluster, the SA-cluster and the
17  south end of the profile. In Figure 9b we see the Sws-cluster at sounding locations 1 to 3,
18  defining a shallow and deep layer, while at sounding locations 6, 8 and 9 the cluster is seen
19  shallowly at low elevations following the coast. The transition from the Sws-cluster to the
20 underlying clusters is tracked by a grey line at sounding locations 1 to 3. Below the grey line
21 at sounding locations 1 and 2, the layers are grouped with the Cl-cluster representing low p,
22  lower T2 and WCs. It is important to note that even with combined SNMR and TEM, it will be
23  hard to distinguish between saltwater and freshwater clays as both will be conductive and

24  have a low free water content and T signatures in SNMR.

25  From sounding locations 3 to 8, the SA-cluster is found with a varying thickness from 2m to

26 10m. This unit, interpreted as the aquifer, is outlined in grey to compare with original parameter

16
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1 values and borehole information later. At the south end of the profile, the clustering divides

2 layers into Cl- and Ti-clusters, associated with clay and till by their low WC and T,
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4 Figure 9 Clustering sections from Endelave where the partitioning of data is shown at every sounding location. (a)
5 Section 1 (b) Section 2 in Figure 2a. The grey lines track selected cluster boundaries.

6 The discrete boundaries from the clusters are now used in the original parameter space to
7  evaluate possible variations within the clusters and the estimated boundaries. In Figure 10,
8  we consider the main shallow aquifer found on Endelave. The grey lines from Figure are used
9 to delineate cluster extents and each unit is assigned a cluster label. Shallowly, the Ti-unit
0 coincides with low WC and a high p in Figure 10a. T2/T are low in this unit and boreholes
11 reveal either till or unsaturated sand here, matching the clustering interpretation. The upper
12 Ti-SA grey line tracks an increase in WC at four sounding locations and coincides with a
13 lithological change from clay to sand in two boreholes and coincides with a water table
14  measurement in a separate borehole. This is interpreted as a semi-confined system with a
15  water table at the layer boundary due to shifts in geological deposits. The SA unit here consists
16 of high WC and low to medium T," within a resistive unit. The boreholes identify this unit as
17  sand or a mixture of sand and silt, which explains the range of WC grouped within this unit.
18  The lower SA/TI transition tracks a decrease in WC, still with low to medium T, seen in Figure
19 10b. The transition coincides with a decrease in p at sounding locations 1 and 2, and with a

20 lithological boundary from sand to clay in a few boreholes. Furthermore, two boreholes

17
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terminate exactly at this interface, which could indicate that the drillers hit something harder

2 or more clay rich, prompting them to stop drilling. The Ti/Cl transition at depth tracks a
3 decrease in p, which in the deep borehole is identified as a lithological boundary from clays
4 and sand to Paleogene clay, agreeing with the clustering interpretations. This deep boundary
5 is not seen in the SNMR-parameters as the Ti and Cl-clusters are only distinguishable by their
6 p.
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8 Figure 10 Profile of 7 SNMR soundings (bars) and TEM p (background). Section 1 in Figure 2b. (a) SNMR WC (b)

9 a split bar with T2 (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure 9.
10  After reviewing the section through the main shallow aquifer in Figure 10, we will assess a
11 second, more complex section. The grey lines from Figure will be used to delineate the cluster
12 units and illustrate differences within the units. Consider now Figure 11, where the p and
13  SNMR parameters are shown with lines following cluster transitions. The Sws unit is seen
14 mainly at location 1 to 3 and is defined by high WC, very high T>" and low p. At sounding
15  location 8, a borehole finds sand coinciding with the Sws-cluster in agreement with the saline
16 sand interpretation. The high T, /T, associated with the Sws-cluster in Figure 11b is a product
17  of limited compaction within the newly deposited saline sand in the coastal environments.
18  Below the Sws-unit, the grey line tracks a transition to lower WC and T, but maintaining the
19 low p, which is defined by the ClI cluster. At sounding location 6, this transition is different with
20  anincrease in p tracking the border to the SA unit. Low WC at sounding locations 10 and 11

18
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coincide with clay in a local borehole for the first 15 m where all layers are grouped within the

2 Tior Cl-clusters. The low water content and T signature at these locations prevent them from
3  being clustered with the saline sands in Sws, highlighting the value of SNMR to distinguish
4  these conductive units. The gyttja layer found in the borehole coincides with a drop in WC due
5 totheincreases in organic matter and was grouped with the Cl-cluster (Mashhadi et al., 2024).
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7 Figure 11 Profile of 11 SNMR soundings (bars) and TEM p (background). Section 2 in Figure 2b. (a) SNMR WC
8 (b) a split bar with T2 (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure 9.

9 By clustering on this dataset, we have proven the ability to identify regions of possible
10  saltwater intrusion. Figure 12 shows which sounding locations have layers that cluster within
11 the saltwater aquifer, the freshwater aquifer, that have layers of both clusters, or only have the
12 till and clay clusters. The saltwater cluster is observed mostly at the northern sounding
13  locations where the post-glacial sands are located, but also along the east coast. The main
14 aquifer unit, SA, is found in the east and north parts of the island, while the west part is
15  dominated by the low water content clusters, shown in yellow and red. One sounding location
16  with both saline and freshwater clusters far from the coast, is observed in the north of the
17  island. The closest TEM sounding was acquired in a lowland south of this sounding, with
18  elevation almost at sea level, which might have issues with saltwater intrusion. There is also

19  awetland close to this location, which might have a higher clay content with low p. If the TEM

19
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1 and SNMR are not exactly coincident, some differences and anomalies in the clustering might
2 occur. But in general, the K-means clustering is able to map this possible saltwater intrusion,

3 which is a valuable asset in aquifer management.
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Figure 12 Sounding locations where salt water or fresh water has been identified. Locations with only clay and till
6 clusters are shown with red and yellow. Map data: © Google Maps 2024, UTM Zone: 32N.

7 4 Discussion

8 In this study we investigated the use of clustering to combine the analysis of two geophysical

9 methods, SNMR and TEM. Previously, the two methods were typically used together in either
10  a joint-inversion or manual joint-interpretation approach. The limited availability of data has
11 constrained the use of SNMR for clustering. Recent developments in SNMR have allowed for
12 rapid acquisitions leading to much higher data densities (Grombacher et al., 2021) requiring a
13 less subjective and fast interpretation scheme, such as clustering approaches. To track
14  lithological boundaries using geophysics, it is necessary to have a contrast in layer parameters
15  between the geological units. An example of this limitation in TEM occurs when saline sand
16 lies above clay, as both have low p, creating little to no p contrast. In SNMR, a similar limitation
17  occurs when distinguishing unsaturated sand and clay/till layers. SNMR can detect an
18 increase in water content but cannot define whether the aquifer is unconfined or confined.
19  Using these methods together can reduce ambiguities encountered when interpreting them

20  separately, as they have complementary characteristics and different sensitivities. The TEM

20
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ambiguity in the saline sands/clays example will be resolved by SNMR as a decrease in WC
at the lithological boundary as SNMR is sensitive only to the quantity of water, not its salinity.
In the SNMR unsaturated limit, TEM would resolve a resistive unit in the unconfined case and
a conductive unit in the semi-confined or confined example. The ability to distinguish these

layers and track them spatially between boreholes is why SNMR and TEM were chosen to

o O b~ WON

find discrete boundaries using K-means clustering.

~N

K-means clustering on geophysical models offers a simple, automated approach to identifying
lithological transitions. It allows for reproduceable boundary definitions without subjective
9 interpretations of the geophysical models. Discretizing smoothly varying parameters into
10 predefined clusters is, however, brutal and there will be variability within the unit definitions.
11 The ability to return to the original parameter space with cluster boundaries is crucial in

12 addressing subtle variations within units and can be used to evaluate cluster transitions.

13 K-means clustering applied to geophysical models is not limited to SNMR and TEM
14  parameters; it can also be extended to other collocated datasets with distinct sensitivities. For
15  example, in areas where a deep water table is expected within a sand layer, seismic methods
16 may be appropriate. However, because the seismic velocity of saturated sands can be similar
17  to that of clays or tills, incorporating collocated TEM models can help reduce interpretational
18  bias. Similarly, relying solely on TEM data may make it difficult to detect the water table due

19  to limited resistivity contrast.

20 In SNMR, correlations between WC and T, may exist. For example, in unsaturated sands, the
21 low water content residing in the pores will be in close contact with the grain surfaces, resulting
22  ininteractions leading to low T,'/T.. Since water content is proportional to signal amplitude, in
23 low WC environments, low signal amplitude results in reduced confidence in the T," estimates.
24 When such parameters are linked, it might be of interest to simplify the approach by clustering
25 on the product of water content and T,". Thus, combining these two parameters may help
26  reduce the influence of low-confidence T,  values in low water content environments. A similar
27  option is to use a principal component analysis to reduce the basis to two parameters that
28  describe the most variance, which in the Kompedal case would be resistivity and the product
29  of the SNMR parameters. However, in more complex geologies such as Endelave, a decrease
30 in basis dimension may reduce the ability to distinguish layers of high WC and low T," from
31 layers with low WC and high T2". Through examining the data’s variation and correlation, we

32  can make informed decisions about whether to decrease the parameter space.

33 In this study, we focused on interpreting two survey areas using K-means clustering, which
34  proved sufficient in meaningfully partitioning data and identifying lithological boundaries. One

35 feature of the employed K-means clustering approach is the need to specify clusters

21
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beforehand. In this study we based the choice of clusters on the silhouette index and prior
geological information about the area. One alternative study uses agglomerative hierarchical
clustering on SkyTEM data, which avoids selecting the number of clusters by starting with one
cluster and subdividing until each data point has its own cluster (Dumont et al., 2018). This
can alleviate some of the choices made for the silhouette index analyses and provide a better
understanding of how clusters are further subdivided. A second challenge is to attribute
uncertainties to the layer boundaries picked by the discrete K-means clustering. Here, others
use fuzzy C-means where data points are assigned a membership score and can be partial

members of more than one cluster (Paasche et al., 2007). Applying the fuzzy C-means can

o O 0o N o o b~ WN

give an estimate of uncertainty for the picked cluster boundaries, i.e., if a data point could be
11 a member of several clusters, it is less certain. This could apply to the Endelave data where

12 the saline intrusion cluster in places could overlap with the freshwater cluster.

13  Since clustering is performed on coincident values, we are limited by the lowest dimension
14  dataset, which in this case is the SNMR, e.g. on Endelave the survey consists of 51 soundings
15  while there are over 23000 TEM soundings in the same area. This reduction in data space
16  disregards large amounts of TEM data, which of course have valuable regional information,
17  but lack coincident SNMR parameters. Additionally, lower data quantity can lead to clusters
18  not representable for the area. If SNMR information could be extrapolated to the full TEM
19  domain through appropriate spatially variable measures, it would allow for clustering on a
20  much larger data set. Future research will focus on extrapolating SNMR parameters across
21 the full TEM domain. This would enable a subdivision of the full TEM domain based on the
22 coincident data clusters, and it will be possible better to delineate areas of potential saline

23  intrusion spatially.

24 5 Conclusion

25  Through two field studies we demonstrated the automated spatial identification and separation
26 of hydrogeological units in large scale geophysical campaigns. Recent improvements in the
27 data acquisition rates of SNMR now offer data volumes sufficient to exploit clustering
28  approaches when combining these data with other geophysical data. K-means clustering of
29  complementary SNMR and TEM models is shown to provide a non-subjective approach,
30 where enhanced hydrogeological interpretations can be formed by exploiting the
31 complementary nature of two data types. To detect lithological boundaries, they must
32 correspond to a contrast in geophysical properties. SNMR is shown to provide value when
33  discriminating clay-rich sediments from saline saturated sand conditions, a challenging task
34  based on only TEM models. Similarly, TEM is able to separate low-water content conditions

35 from clay-rich conditions, which is impossible with SNMR alone. This is key to discriminating

22
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1 between unconfined and semi-confined conditions. A silhouette index-based approach,
2 combined with the a priori knowledge of the likely number of lithological units present, is shown

3  to be arobust measure for selecting the number of clusters.

4 Inthe examples, clustering of NMR and TEM data provides a more complete characterization

of local hydrogeological conditions than what can be achieved by each data set separately.
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